Mapping Global Research on Agrochemicals and Sustainability: A Bibliometric Analysis of Environmental and Economic Perspectives

Authors

https://doi.org/10.48313/iee.v1i2.44

Abstract

The transition toward sustainable agriculture has intensified global attention on the environmental and economic implications of agrochemical use. Agrochemicals remain vital for food security, yet their misuse contributes to soil degradation, pollution, and greenhouse gas emissions. This study employs a bibliometric approach to examine global research trends, collaboration patterns, and thematic developments linking agrochemicals with environmental sustainability and the green economy. Data were retrieved from the Scopus database covering the period 1976–2025 and analyzed using performance indicators, co-authorship, co-citation, and keyword co-occurrence mapping. The results reveal a continuous increase in publications and citations, particularly after 2018, reflecting the growing relevance of sustainable agricultural practices. Europe and North America dominate scientific output and influence, while developing regions show emerging but limited participation. Thematic analysis indicates a paradigm shift from productivity-driven studies to sustainability-oriented research emphasizing biochar, nutrient recycling, and circular agriculture. Reference co-citation patterns further highlight the integration of environmental policy, agronomic innovation, and economic frameworks.These findings provide a holistic overview of how scientific communities have evolved to address the dual challenge of agricultural productivity and environmental protection. The study contributes to future research and policy formulation by identifying emerging directions for sustainable agrochemical management and reinforcing the need for equitable global collaboration in the transition toward a low-carbon agricultural economy.

Keywords:

Bibliometric mapping, Circular agriculture, Eco-innovation, Environmental management, Green economy transition

References

  1. [1] Mitra, B., Chowdhury, A. R., Dey, P., Hazra, K. K., Sinha, A. K., Hossain, A., & Meena, R. S. (2021). Use of agrochemicals in agriculture: alarming issues and solutions. In Input use efficiency for food and environmental security (pp. 85–122). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5199-1_4

  2. [2] Elumalai, P., Gao, X., Parthipan, P., Luo, J., & Cui, J. (2025). Agrochemical pollution: a serious threat to environmental health. Current opinion in environmental science & health, 43, 100597. https://doi.org/10.1016/j.coesh.2025.100597

  3. [3] Devi, P. I., Manjula, M., & Bhavani, R. V. (2022). Agrochemicals, environment, and human health. Annual review of environment and resources, 47(1), 399–421. https://doi.org/10.1146/annurev-environ-120920-111015

  4. [4] Akpan, G. E., Ndukwu, M. C., Etim, P. J., Ekop, I. E., & Udoh, I. E. (2023). Food safety and agrochemicals: risk assessment and food security implications (pp. 301–333). https://doi.org/ 10.1007/978-981-99-3439-3_11

  5. [5] Iyiola, A. O., Kolawole, A. S., & Oyewole, E. O. (2023). Sustainable alternatives to agrochemicals and their socio-economic and ecological values (pp. 699–734). https://doi.org/ 10.1007/978-981-99-3439-3_25

  6. [6] Qadir, M., Hussain, A., Iqbal, A., Shah, F., Wu, W., & Cai, H. (2024). Microbial utilization to nurture robust agroecosystems for food security. Agronomy, 14(9), 1891. https://doi.org/10.3390/agronomy14091891

  7. [7] Surna, M. I., Fazli, Q. S., Chamzurni, T., Susanna, S., & Mauer, G. (2025). Influence of elevational and environmental factors on parasitic nematode distribution in arabica coffee in the Gayo Highlands, Indonesia, 3(1), 56-66. https://doi.org/10.60084/ljes.v3i2.293

  8. [8] Hossain, M. E., Shahrukh, S., & Hossain, S. A. (2022). Chemical Fertilizers and pesticides: impacts on soil degradation, groundwater, and human health in Bangladesh (pp. 63–92). https://doi.org/ 10.1007/978-3-030-95542-7_4

  9. [9] Boudh, S., & Singh, J. S. (2019). Pesticide contamination: environmental problems and remediation strategies. In Emerging and eco-friendly approaches for waste management (pp. 245–269). Singapore: Springer Singapore. https://doi.org/ 10.1007/978-981-10-8669-4_12

  10. [10] Sarkar, S., Jaswal, A., & Singh, A. (2024). Sources of inorganic nonmetallic contaminants (synthetic fertilizers, pesticides) in agricultural soil and their impacts on the adjacent ecosystems. In Bioremediation of emerging contaminants from soils (pp. 135–161). Elsevier. https://doi.org/ 10.1016/B978-0-443-13993-2.00007-4

  11. [11] Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362(6417). https://doi.org/10.1126/science.aav0294

  12. [12] Adisa, O., Ilugbusi, B. S., Adelekan, O. A., Asuzu, O. F., & Ndubuisi, N. I. (2024). A comprehensive review of redefining agricultural economics for sustainable development: overcoming challenges and seizing opportunities in a changing world. World journal of advanced research and reviews, 21(1), 2329–1241. https://doi.org/10.30574/wjarr.2024.21.1.0322

  13. [13] Shattuck, A. (2021). Generic, growing, green?: The changing political economy of the global pesticide complex. The journal of peasant studies, 48(2), 231–253. https://doi.org/10.1080/03066150.2020.1839053

  14. [14] Arkadinata, T., Fazli, Q. S., Alfizar, A., Hakim, L., & Idroes, G. M. (2025). Environmental influence of altitude on coffee leaf rust severity in arabica coffee of Aceh Tengah, Indonesia. Leuser journal of environmental studies, 3(2 SE-Articles), 79–86. https://doi.org/10.60084/ljes.v3i2.344

  15. [15] Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical transactions of the royal society b: biological sciences, 363(1491), 447–465. https://doi.org/10.1098/rstb.2007.2163

  16. [16] Thompson, J., Millstone, E., Scoones, I., Ely, A., Marshall, F., Shah, E., … & Wilkinson, J. (2007). Agri-food system dynamics: pathways to sustainability in an era of uncertainty. https://opendocs.ids.ac.uk/articles/report/Agri-Food_System_Dynamics_pathways_to_sustainability_in_an_era_of_uncertainty/26449741

  17. [17] Filipović, S., Lior, N., & Radovanović, M. (2022). The green deal – just transition and sustainable development goals Nexus. Renewable and sustainable energy reviews, 168, 112759. https://doi.org/10.1016/j.rser.2022.112759

  18. [18] Tutak, M., Brodny, J., & Bindzár, P. (2021). Assessing the level of energy and climate sustainability in the european union countries in the context of the european green deal strategy and Agenda 2030. Energies, 14(6), 1767. https://doi.org/10.3390/en14061767

  19. [19] Bonfante, A., Basile, A., & Bouma, J. (2020). Targeting the soil quality and soil health concepts when aiming for the United Nations sustainable development goals and the EU green deal. SOIL, 6(2), 453–466. https://doi.org/10.5194/soil-6-453-2020

  20. [20] Dzebo, A., Janetschek, H., Brandi, C., & Iacobuta, G. (2019). Connections between the Paris agreement and the 2030 Agenda. Stockholm Environment Institute. https://www.sei.org/wp-content/uploads/2019/08/connections-between-the-paris-agreement-and-the-2030-agenda.pdf

  21. [21] Venkatesh, G. (2022). Circular bio-economy—paradigm for the future: systematic review of scientific journal publications from 2015 to 2021. Circular economy and sustainability, 2(1), 231–279. https://doi.org/10.1007/s43615-021-00084-3

  22. [22] Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. Journal of cleaner production, 177, 197–206. https://doi.org/10.1016/j.jclepro.2017.12.172

  23. [23] D’Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., … & Toppinen, A. (2017). Green, circular, bio economy: a comparative analysis of sustainability avenues. Journal of cleaner production, 168, 716–734. https://doi.org/10.1016/j.jclepro.2017.09.053

  24. [24] Sarker, N. K., & Kaparaju, P. (2024). Microalgal bioeconomy: a green economy approach towards achieving sustainable development goals. Sustainability, 16(24), 11218. https://doi.org/10.3390/su162411218

  25. [25] Hardi, I., Idroes, G. M., Márquez-Ramos, L., Noviandy, T. R., & Idroes, R. (2025). Inclusive innovation and green growth in advanced economies. Sustainable futures, 9, 100540. https://doi.org/10.1016/j.sftr.2025.100540

  26. [26] Hardi, I., Afjal, M., Khan, M., Idroes, G. M., Noviandy, T. R., & Utami, R. T. (2024). Economic freedom and growth dynamics in Indonesia: an empirical analysis of indicators driving sustainable development. Cogent economics & finance, 12(1). https://doi.org/10.1080/23322039.2024.2433023

  27. [27] Fu, H. Z., & Waltman, L. (2022). A large-scale bibliometric analysis of global climate change research between 2001 and 2018. Climatic change, 170(3–4), 36. https://doi.org/10.1007/s10584-022-03324-z

  28. [28] Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: current status, development, and future directions. Land, 9(1), 28. https://doi.org/10.3390/land9010028

  29. [29] Janik, A., Ryszko, A., & Szafraniec, M. (2020). Scientific landscape of smart and sustainable cities literature: a bibliometric analysis. Sustainability, 12(3), 779. https://doi.org/10.3390/su12030779

  30. [30] Agustina, M., Thahira, Z., Zikra, N., Amalina, F., Afjal, M., & Idroes, G. M. (2025). General equilibrium model applications in energy research: a bibliometric analysis. Ekonomikalia journal of economics, 3(1), 64–77. https://doi.org/10.60084/eje.v3i1.291

  31. [31] Klarin, A. (2024). How to conduct a bibliometric content analysis: guidelines and contributions of content co‐occurrence or co‐word literature reviews. International journal of consumer studies, 48(2). https://doi.org/10.1111/ijcs.13031

  32. [32] Anderson, J. M., & Ingram, J. S. I. (1994). Tropical soil biology and fertility: a handbook of methods. Soil science, 157(4), 265. https://journals.lww.com/soilsci/citation/1994/04000/Tropical_Soil_Biology_and_Fertility__A_Handbook_of.12.aspx

  33. [33] Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of statistical software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

  34. [34] Ganguly, R. K., Mukherjee, A., Chakraborty, S. K., & Verma, J. P. (2021). Impact of agrochemical application in sustainable agriculture. In New and future developments in microbial biotechnology and bioengineering (pp. 15–24). Elsevier. https://doi.org/10.1016/B978-0-444-64325-4.00002-X

  35. [35] Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., & Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental science: processes & impacts, 23(2), 213–239.https://doi.org/10.1039/D0EM00404A

  36. [36] Tilman, D. (1999). Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the national academy of sciences, 96(11), 5995–6000. https://doi.org/10.1073/pnas.96.11.5995

  37. [37] Fazli, Q. S., Idroes, G. M., Hilal, I. S., Hafizah, I., Hardi, I., & Noviandy, T. R. (2025). Agrochemicals, GHG emissions, and GDP in Southeast Asia: a machine learning approach with hierarchical clustering. Grimsa journal of business and economics studies, 2(2), 140–151. https://doi.org/10.61975/gjbes.v2i2.93

  38. [38] Fish, R. D., Ioris, A. A. R., & Watson, N. M. (2010). Integrating water and agricultural management: collaborative governance for a complex policy problem. Science of the total environment, 408(23), 5623–5630. https://doi.org/10.1016/j.scitotenv.2009.10.010

  39. [39] Abo-Khalil, A. G. (2024). Integrating sustainability into higher education challenges and opportunities for universities worldwide. Heliyon, 10(9), e29946. https://doi.org/10.1016/j.heliyon.2024.e29946

  40. [40] Ige, A. B., Kupa, E., & Ilori, O. (2024). Best practices in cybersecurity for green building management systems: Protecting sustainable infrastructure from cyber threats. International journal of science and research archive, 12(1), 2960–2977. https://doi.org/10.30574/ijsra.2024.12.1.1185

  41. [41] Hardi, I., Idroes, G. M., Zulham, T., Suriani, S., & Saputra, J. (2023). Economic growth, agriculture, capital formation and greenhouse gas emissions in Indonesia: FMOLS, DOLS and CCR applications. Ekonomikalia journal of economics, 1(2), 82–91. https://doi.org/10.60084/eje.v1i2.109

  42. [42] Nelles, W. (2023). Academic network-building for agroecology and sustainable agri-food systems in Southeast Asia: critical reflections on a regional initiative. Agroecology and sustainable food systems, 47(1), 126–155. DOI:10.1080/21683565.2022.2134955

  43. [43] Henkhaus, N., Bartlett, M., Gang, D., Grumet, R., Jordon‐Thaden, I., Lorence, A., … & Stern, D. (2020). Plant science decadal vision 2020–2030: reimagining the potential of plants for a healthy and sustainable future. Plant direct, 4(8). https://doi.org/10.1002/pld3.252

  44. [44] Lühmann, M. (2020). Whose European bioeconomy? relations of forces in the shaping of an updated EU bioeconomy strategy. Environmental development, 35, 100547. https://doi.org/10.1016/j.envdev.2020.100547

  45. [45] Fritsche, U., Brunori, G., Chiaramonti, D., Galanakis, C., Hellweg, S., Matthews, R., & Panoutsou, C. (2020). Future transitions for the bioeconomy towards sustainable development and a climate-neutral economy—knowledge synthesis final report. Publications office of the european union, luxembourg, 10, 667966. https://dx.doi.org/10.2760/763277

  46. [46] Robert, N., Giuntoli, J., Araujo, R., Avraamides, M., Balzi, E., Barredo, J. I., … & Mubareka, S. (2020). Development of a bioeconomy monitoring framework for the European Union: an integrative and collaborative approach. New biotechnology, 59, 10–19. https://dx.doi.org/10.1016/j.nbt.2020.06.001

  47. [47] Allam, Z., & Cheshmehzangi, A. (2024). Sustainable futures and green new Deals. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63642-4

  48. [48] Wyse, D. L. (1994). New technologies and approaches for weed management in sustainable agriculture systems. Weed technology, 8(2), 403–407. https://doi.org/10.1017/S0890037X00039014

  49. [49] Bajwa, A. A. (2014). Sustainable weed management in conservation agriculture. Crop protection, 65, 105–113. https://doi.org/10.1016/j.cropro.2014.07.014

  50. [50] Abate, T., van Huis, A., & Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: an African perspective. Annual review of entomology, 45(1), 631–659. https://doi.org/10.1146/annurev.ento.45.1.631

  51. [51] Monteiro, A., & Santos, S. (2022). Sustainable approach to weed management: the role of precision weed management. Agronomy, 12(1), 118. https://doi.org/10.3390/agronomy12010118

  52. [52] Song, J., Wang, Y., Zhang, S., Song, Y., Xue, S., Liu, L., … & Yang, G. (2021). Coupling biochar with anaerobic digestion in a circular economy perspective: a promising way to promote sustainable energy, environment and agriculture development in China. Renewable and sustainable energy reviews, 144, 110973. https://doi.org/10.1016/j.rser.2021.110973

  53. [53] Rekleitis, G., Haralambous, K.-J., Loizidou, M., & Aravossis, K. (2020). Utilization of agricultural and livestock waste in anaerobic digestion (A.D): applying the biorefinery concept in a circular economy. Energies, 13(17), 4428. https://doi.org/10.3390/en13174428

  54. [54] Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., … & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresource technology, 304, 123036. https://doi.org/10.1016/j.biortech.2020.123036

  55. [55] Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., … & Sebok, A. (2018). A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical reviews in environmental science and technology, 48(6), 614–654. https://doi.org/10.1080/10643389.2018.1471957

  56. [56] Bastos Lima, M. G. (2021). The politics of bioeconomy and sustainability. Springer International Publishing. https://doi.org/10.1007/978-3-030-66838-9

  57. [57] Möslinger, M., Ulpiani, G., & Vetters, N. (2023). Circular economy and waste management to empower a climate-neutral urban future. Journal of cleaner production, 421, 138454. https://doi.org/10.1016/j.jclepro.2023.138454

  58. [58] Ejedegba, E. O. Advancing green energy transitions with eco-friendly fertilizer solutions supporting agricultural sustainability. (2025). International research journal of modernization in engineering technology and science, 16(12), 1970-1986. https://doi.org/10.56726/IRJMETS65313

  59. [59] Davis, S. C., Kauneckis, D., Kruse, N. A., Miller, K. E., Zimmer, M., & Dabelko, G. D. (2016). Closing the loop: integrative systems management of waste in food, energy, and water systems. Journal of environmental studies and sciences, 6(1), 11–24. https://doi.org/10.1007/s13412-016-0370-0

  60. [60] Dsouza, A., Price, G. W., Dixon, M., & Graham, T. (2021). A conceptual framework for incorporation of composting in closed-loop urban controlled environment agriculture. Sustainability, 13(5), 2471. https://doi.org/10.3390/su13052471

  61. [61] Maulidar, P., Fitriyani, F., Sasmita, N. R., Hardi, I., & Idroes, G. M. (2024). Exploring Indonesia’s CO2 emissions: the impact of agriculture, economic growth, capital and labor. Grimsa journal of business and economics studies, 1(1), 43–55. https://doi.org/10.61975/gjbes.v1i1.22

  62. [62] Idroes, G. M., Hafizah, I., Hartono, D., Dharma, D. B., Hardi, I., Noviandy, T. R., & Idroes, R. (2025). Investigating hydropower energy consumption’s effect on Southeast Asia’s path to achieving environmental sustainability and carbon neutrality. Carbon research, 4(1), 57. https://doi.org/10.1007/s44246-025-00218-4

  63. [63] Rodino, S., Pop, R., Sterie, C., Giuca, A., & Dumitru, E. (2023). Developing an evaluation framework for circular agriculture: a pathway to sustainable farming. Agriculture, 13(11), 2047. https://doi.org/10.3390/agriculture13112047

  64. [64] Altieri, M. A. (2018). Agroecology: the science of sustainable agriculture. CRC press. https://doi.org/10.5555/19960700911

  65. [65] Chojnacka, K. (2024). Sustainable chemistry in adaptive agriculture: a review. Current opinion in green and sustainable chemistry, 46, 100898. https://doi.org/10.1016/j.cogsc.2024.100898

Published

2025-06-10

How to Cite

Mapping Global Research on Agrochemicals and Sustainability: A Bibliometric Analysis of Environmental and Economic Perspectives. (2025). Innovations in Environmental Economics , 1(2), 109-124. https://doi.org/10.48313/iee.v1i2.44

Similar Articles

You may also start an advanced similarity search for this article.