Mapping Global Research on Agrochemicals and Sustainability: A Bibliometric Analysis of Environmental and Economic Perspectives
Abstract
The transition toward sustainable agriculture has intensified global attention on the environmental and economic implications of agrochemical use. Agrochemicals remain vital for food security, yet their misuse contributes to soil degradation, pollution, and greenhouse gas emissions. This study employs a bibliometric approach to examine global research trends, collaboration patterns, and thematic developments linking agrochemicals with environmental sustainability and the green economy. Data were retrieved from the Scopus database covering the period 1976–2025 and analyzed using performance indicators, co-authorship, co-citation, and keyword co-occurrence mapping. The results reveal a continuous increase in publications and citations, particularly after 2018, reflecting the growing relevance of sustainable agricultural practices. Europe and North America dominate scientific output and influence, while developing regions show emerging but limited participation. Thematic analysis indicates a paradigm shift from productivity-driven studies to sustainability-oriented research emphasizing biochar, nutrient recycling, and circular agriculture. Reference co-citation patterns further highlight the integration of environmental policy, agronomic innovation, and economic frameworks.These findings provide a holistic overview of how scientific communities have evolved to address the dual challenge of agricultural productivity and environmental protection. The study contributes to future research and policy formulation by identifying emerging directions for sustainable agrochemical management and reinforcing the need for equitable global collaboration in the transition toward a low-carbon agricultural economy.
Keywords:
Bibliometric mapping, Circular agriculture, Eco-innovation, Environmental management, Green economy transitionReferences
- [1] Mitra, B., Chowdhury, A. R., Dey, P., Hazra, K. K., Sinha, A. K., Hossain, A., & Meena, R. S. (2021). Use of agrochemicals in agriculture: alarming issues and solutions. In Input use efficiency for food and environmental security (pp. 85–122). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5199-1_4
- [2] Elumalai, P., Gao, X., Parthipan, P., Luo, J., & Cui, J. (2025). Agrochemical pollution: a serious threat to environmental health. Current opinion in environmental science & health, 43, 100597. https://doi.org/10.1016/j.coesh.2025.100597
- [3] Devi, P. I., Manjula, M., & Bhavani, R. V. (2022). Agrochemicals, environment, and human health. Annual review of environment and resources, 47(1), 399–421. https://doi.org/10.1146/annurev-environ-120920-111015
- [4] Akpan, G. E., Ndukwu, M. C., Etim, P. J., Ekop, I. E., & Udoh, I. E. (2023). Food safety and agrochemicals: risk assessment and food security implications (pp. 301–333). https://doi.org/ 10.1007/978-981-99-3439-3_11
- [5] Iyiola, A. O., Kolawole, A. S., & Oyewole, E. O. (2023). Sustainable alternatives to agrochemicals and their socio-economic and ecological values (pp. 699–734). https://doi.org/ 10.1007/978-981-99-3439-3_25
- [6] Qadir, M., Hussain, A., Iqbal, A., Shah, F., Wu, W., & Cai, H. (2024). Microbial utilization to nurture robust agroecosystems for food security. Agronomy, 14(9), 1891. https://doi.org/10.3390/agronomy14091891
- [7] Surna, M. I., Fazli, Q. S., Chamzurni, T., Susanna, S., & Mauer, G. (2025). Influence of elevational and environmental factors on parasitic nematode distribution in arabica coffee in the Gayo Highlands, Indonesia, 3(1), 56-66. https://doi.org/10.60084/ljes.v3i2.293
- [8] Hossain, M. E., Shahrukh, S., & Hossain, S. A. (2022). Chemical Fertilizers and pesticides: impacts on soil degradation, groundwater, and human health in Bangladesh (pp. 63–92). https://doi.org/ 10.1007/978-3-030-95542-7_4
- [9] Boudh, S., & Singh, J. S. (2019). Pesticide contamination: environmental problems and remediation strategies. In Emerging and eco-friendly approaches for waste management (pp. 245–269). Singapore: Springer Singapore. https://doi.org/ 10.1007/978-981-10-8669-4_12
- [10] Sarkar, S., Jaswal, A., & Singh, A. (2024). Sources of inorganic nonmetallic contaminants (synthetic fertilizers, pesticides) in agricultural soil and their impacts on the adjacent ecosystems. In Bioremediation of emerging contaminants from soils (pp. 135–161). Elsevier. https://doi.org/ 10.1016/B978-0-443-13993-2.00007-4
- [11] Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362(6417). https://doi.org/10.1126/science.aav0294
- [12] Adisa, O., Ilugbusi, B. S., Adelekan, O. A., Asuzu, O. F., & Ndubuisi, N. I. (2024). A comprehensive review of redefining agricultural economics for sustainable development: overcoming challenges and seizing opportunities in a changing world. World journal of advanced research and reviews, 21(1), 2329–1241. https://doi.org/10.30574/wjarr.2024.21.1.0322
- [13] Shattuck, A. (2021). Generic, growing, green?: The changing political economy of the global pesticide complex. The journal of peasant studies, 48(2), 231–253. https://doi.org/10.1080/03066150.2020.1839053
- [14] Arkadinata, T., Fazli, Q. S., Alfizar, A., Hakim, L., & Idroes, G. M. (2025). Environmental influence of altitude on coffee leaf rust severity in arabica coffee of Aceh Tengah, Indonesia. Leuser journal of environmental studies, 3(2 SE-Articles), 79–86. https://doi.org/10.60084/ljes.v3i2.344
- [15] Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical transactions of the royal society b: biological sciences, 363(1491), 447–465. https://doi.org/10.1098/rstb.2007.2163
- [16] Thompson, J., Millstone, E., Scoones, I., Ely, A., Marshall, F., Shah, E., … & Wilkinson, J. (2007). Agri-food system dynamics: pathways to sustainability in an era of uncertainty. https://opendocs.ids.ac.uk/articles/report/Agri-Food_System_Dynamics_pathways_to_sustainability_in_an_era_of_uncertainty/26449741
- [17] Filipović, S., Lior, N., & Radovanović, M. (2022). The green deal – just transition and sustainable development goals Nexus. Renewable and sustainable energy reviews, 168, 112759. https://doi.org/10.1016/j.rser.2022.112759
- [18] Tutak, M., Brodny, J., & Bindzár, P. (2021). Assessing the level of energy and climate sustainability in the european union countries in the context of the european green deal strategy and Agenda 2030. Energies, 14(6), 1767. https://doi.org/10.3390/en14061767
- [19] Bonfante, A., Basile, A., & Bouma, J. (2020). Targeting the soil quality and soil health concepts when aiming for the United Nations sustainable development goals and the EU green deal. SOIL, 6(2), 453–466. https://doi.org/10.5194/soil-6-453-2020
- [20] Dzebo, A., Janetschek, H., Brandi, C., & Iacobuta, G. (2019). Connections between the Paris agreement and the 2030 Agenda. Stockholm Environment Institute. https://www.sei.org/wp-content/uploads/2019/08/connections-between-the-paris-agreement-and-the-2030-agenda.pdf
- [21] Venkatesh, G. (2022). Circular bio-economy—paradigm for the future: systematic review of scientific journal publications from 2015 to 2021. Circular economy and sustainability, 2(1), 231–279. https://doi.org/10.1007/s43615-021-00084-3
- [22] Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. Journal of cleaner production, 177, 197–206. https://doi.org/10.1016/j.jclepro.2017.12.172
- [23] D’Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., … & Toppinen, A. (2017). Green, circular, bio economy: a comparative analysis of sustainability avenues. Journal of cleaner production, 168, 716–734. https://doi.org/10.1016/j.jclepro.2017.09.053
- [24] Sarker, N. K., & Kaparaju, P. (2024). Microalgal bioeconomy: a green economy approach towards achieving sustainable development goals. Sustainability, 16(24), 11218. https://doi.org/10.3390/su162411218
- [25] Hardi, I., Idroes, G. M., Márquez-Ramos, L., Noviandy, T. R., & Idroes, R. (2025). Inclusive innovation and green growth in advanced economies. Sustainable futures, 9, 100540. https://doi.org/10.1016/j.sftr.2025.100540
- [26] Hardi, I., Afjal, M., Khan, M., Idroes, G. M., Noviandy, T. R., & Utami, R. T. (2024). Economic freedom and growth dynamics in Indonesia: an empirical analysis of indicators driving sustainable development. Cogent economics & finance, 12(1). https://doi.org/10.1080/23322039.2024.2433023
- [27] Fu, H. Z., & Waltman, L. (2022). A large-scale bibliometric analysis of global climate change research between 2001 and 2018. Climatic change, 170(3–4), 36. https://doi.org/10.1007/s10584-022-03324-z
- [28] Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: current status, development, and future directions. Land, 9(1), 28. https://doi.org/10.3390/land9010028
- [29] Janik, A., Ryszko, A., & Szafraniec, M. (2020). Scientific landscape of smart and sustainable cities literature: a bibliometric analysis. Sustainability, 12(3), 779. https://doi.org/10.3390/su12030779
- [30] Agustina, M., Thahira, Z., Zikra, N., Amalina, F., Afjal, M., & Idroes, G. M. (2025). General equilibrium model applications in energy research: a bibliometric analysis. Ekonomikalia journal of economics, 3(1), 64–77. https://doi.org/10.60084/eje.v3i1.291
- [31] Klarin, A. (2024). How to conduct a bibliometric content analysis: guidelines and contributions of content co‐occurrence or co‐word literature reviews. International journal of consumer studies, 48(2). https://doi.org/10.1111/ijcs.13031
- [32] Anderson, J. M., & Ingram, J. S. I. (1994). Tropical soil biology and fertility: a handbook of methods. Soil science, 157(4), 265. https://journals.lww.com/soilsci/citation/1994/04000/Tropical_Soil_Biology_and_Fertility__A_Handbook_of.12.aspx
- [33] Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of statistical software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- [34] Ganguly, R. K., Mukherjee, A., Chakraborty, S. K., & Verma, J. P. (2021). Impact of agrochemical application in sustainable agriculture. In New and future developments in microbial biotechnology and bioengineering (pp. 15–24). Elsevier. https://doi.org/10.1016/B978-0-444-64325-4.00002-X
- [35] Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., & Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental science: processes & impacts, 23(2), 213–239.https://doi.org/10.1039/D0EM00404A
- [36] Tilman, D. (1999). Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the national academy of sciences, 96(11), 5995–6000. https://doi.org/10.1073/pnas.96.11.5995
- [37] Fazli, Q. S., Idroes, G. M., Hilal, I. S., Hafizah, I., Hardi, I., & Noviandy, T. R. (2025). Agrochemicals, GHG emissions, and GDP in Southeast Asia: a machine learning approach with hierarchical clustering. Grimsa journal of business and economics studies, 2(2), 140–151. https://doi.org/10.61975/gjbes.v2i2.93
- [38] Fish, R. D., Ioris, A. A. R., & Watson, N. M. (2010). Integrating water and agricultural management: collaborative governance for a complex policy problem. Science of the total environment, 408(23), 5623–5630. https://doi.org/10.1016/j.scitotenv.2009.10.010
- [39] Abo-Khalil, A. G. (2024). Integrating sustainability into higher education challenges and opportunities for universities worldwide. Heliyon, 10(9), e29946. https://doi.org/10.1016/j.heliyon.2024.e29946
- [40] Ige, A. B., Kupa, E., & Ilori, O. (2024). Best practices in cybersecurity for green building management systems: Protecting sustainable infrastructure from cyber threats. International journal of science and research archive, 12(1), 2960–2977. https://doi.org/10.30574/ijsra.2024.12.1.1185
- [41] Hardi, I., Idroes, G. M., Zulham, T., Suriani, S., & Saputra, J. (2023). Economic growth, agriculture, capital formation and greenhouse gas emissions in Indonesia: FMOLS, DOLS and CCR applications. Ekonomikalia journal of economics, 1(2), 82–91. https://doi.org/10.60084/eje.v1i2.109
- [42] Nelles, W. (2023). Academic network-building for agroecology and sustainable agri-food systems in Southeast Asia: critical reflections on a regional initiative. Agroecology and sustainable food systems, 47(1), 126–155. DOI:10.1080/21683565.2022.2134955
- [43] Henkhaus, N., Bartlett, M., Gang, D., Grumet, R., Jordon‐Thaden, I., Lorence, A., … & Stern, D. (2020). Plant science decadal vision 2020–2030: reimagining the potential of plants for a healthy and sustainable future. Plant direct, 4(8). https://doi.org/10.1002/pld3.252
- [44] Lühmann, M. (2020). Whose European bioeconomy? relations of forces in the shaping of an updated EU bioeconomy strategy. Environmental development, 35, 100547. https://doi.org/10.1016/j.envdev.2020.100547
- [45] Fritsche, U., Brunori, G., Chiaramonti, D., Galanakis, C., Hellweg, S., Matthews, R., & Panoutsou, C. (2020). Future transitions for the bioeconomy towards sustainable development and a climate-neutral economy—knowledge synthesis final report. Publications office of the european union, luxembourg, 10, 667966. https://dx.doi.org/10.2760/763277
- [46] Robert, N., Giuntoli, J., Araujo, R., Avraamides, M., Balzi, E., Barredo, J. I., … & Mubareka, S. (2020). Development of a bioeconomy monitoring framework for the European Union: an integrative and collaborative approach. New biotechnology, 59, 10–19. https://dx.doi.org/10.1016/j.nbt.2020.06.001
- [47] Allam, Z., & Cheshmehzangi, A. (2024). Sustainable futures and green new Deals. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63642-4
- [48] Wyse, D. L. (1994). New technologies and approaches for weed management in sustainable agriculture systems. Weed technology, 8(2), 403–407. https://doi.org/10.1017/S0890037X00039014
- [49] Bajwa, A. A. (2014). Sustainable weed management in conservation agriculture. Crop protection, 65, 105–113. https://doi.org/10.1016/j.cropro.2014.07.014
- [50] Abate, T., van Huis, A., & Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: an African perspective. Annual review of entomology, 45(1), 631–659. https://doi.org/10.1146/annurev.ento.45.1.631
- [51] Monteiro, A., & Santos, S. (2022). Sustainable approach to weed management: the role of precision weed management. Agronomy, 12(1), 118. https://doi.org/10.3390/agronomy12010118
- [52] Song, J., Wang, Y., Zhang, S., Song, Y., Xue, S., Liu, L., … & Yang, G. (2021). Coupling biochar with anaerobic digestion in a circular economy perspective: a promising way to promote sustainable energy, environment and agriculture development in China. Renewable and sustainable energy reviews, 144, 110973. https://doi.org/10.1016/j.rser.2021.110973
- [53] Rekleitis, G., Haralambous, K.-J., Loizidou, M., & Aravossis, K. (2020). Utilization of agricultural and livestock waste in anaerobic digestion (A.D): applying the biorefinery concept in a circular economy. Energies, 13(17), 4428. https://doi.org/10.3390/en13174428
- [54] Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., … & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresource technology, 304, 123036. https://doi.org/10.1016/j.biortech.2020.123036
- [55] Gontard, N., Sonesson, U., Birkved, M., Majone, M., Bolzonella, D., Celli, A., … & Sebok, A. (2018). A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical reviews in environmental science and technology, 48(6), 614–654. https://doi.org/10.1080/10643389.2018.1471957
- [56] Bastos Lima, M. G. (2021). The politics of bioeconomy and sustainability. Springer International Publishing. https://doi.org/10.1007/978-3-030-66838-9
- [57] Möslinger, M., Ulpiani, G., & Vetters, N. (2023). Circular economy and waste management to empower a climate-neutral urban future. Journal of cleaner production, 421, 138454. https://doi.org/10.1016/j.jclepro.2023.138454
- [58] Ejedegba, E. O. Advancing green energy transitions with eco-friendly fertilizer solutions supporting agricultural sustainability. (2025). International research journal of modernization in engineering technology and science, 16(12), 1970-1986. https://doi.org/10.56726/IRJMETS65313
- [59] Davis, S. C., Kauneckis, D., Kruse, N. A., Miller, K. E., Zimmer, M., & Dabelko, G. D. (2016). Closing the loop: integrative systems management of waste in food, energy, and water systems. Journal of environmental studies and sciences, 6(1), 11–24. https://doi.org/10.1007/s13412-016-0370-0
- [60] Dsouza, A., Price, G. W., Dixon, M., & Graham, T. (2021). A conceptual framework for incorporation of composting in closed-loop urban controlled environment agriculture. Sustainability, 13(5), 2471. https://doi.org/10.3390/su13052471
- [61] Maulidar, P., Fitriyani, F., Sasmita, N. R., Hardi, I., & Idroes, G. M. (2024). Exploring Indonesia’s CO2 emissions: the impact of agriculture, economic growth, capital and labor. Grimsa journal of business and economics studies, 1(1), 43–55. https://doi.org/10.61975/gjbes.v1i1.22
- [62] Idroes, G. M., Hafizah, I., Hartono, D., Dharma, D. B., Hardi, I., Noviandy, T. R., & Idroes, R. (2025). Investigating hydropower energy consumption’s effect on Southeast Asia’s path to achieving environmental sustainability and carbon neutrality. Carbon research, 4(1), 57. https://doi.org/10.1007/s44246-025-00218-4
- [63] Rodino, S., Pop, R., Sterie, C., Giuca, A., & Dumitru, E. (2023). Developing an evaluation framework for circular agriculture: a pathway to sustainable farming. Agriculture, 13(11), 2047. https://doi.org/10.3390/agriculture13112047
- [64] Altieri, M. A. (2018). Agroecology: the science of sustainable agriculture. CRC press. https://doi.org/10.5555/19960700911
- [65] Chojnacka, K. (2024). Sustainable chemistry in adaptive agriculture: a review. Current opinion in green and sustainable chemistry, 46, 100898. https://doi.org/10.1016/j.cogsc.2024.100898
