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1|Introduction 

Over the past few years, the globe has faced enormous and critical difficulties related to global warming, rising 

temperatures and ecological constraints. Countries' pursuit of financial prosperity frequently results in 
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Abstract 

This study delves into the complex connections between AI advancements, energy usage, industrialization, population increase, 

GDP growth, and the cumulative effect on the ecological footprint (EF) in the United States from 1996 to 2022. The advanced 

econometric methods like unit root tests (ADF, P-P, and DF-GLS) were applied in the study to examine the non-stationary 

variables. Furthermore, the Autoregressive Distributed Lag (ARDL) was utilized for both short and long-term effects, and the 

paper delivers a comprehensive analysis of the dynamics of environmental sustainability. Additional validation of the ARDL 

findings comes from robustness checks done on FMOLS, DOLS, and CCR estimation. The findings indicate that there is a 

positive correlation between the growth of GDP, energy consumption, industrialization, and increase in population and EF, which 

implies that more economic activities, increased industrial expansion, and a rise in the population cause increased levels of 

pollution and depletion of resources. In contrast, AI innovation exhibits a negative correlation with the EF, indicating that AI 

advancements can mitigate environmental degradation by optimizing resource usage and promoting sustainable practices. These 

results demonstrate how AI innovation and renewable energy sources can improve environmental well-being while tackling the 

problems caused by industrialization and GDP growth. In order to achieve equilibrium between growth in the economy and 

environmental conservation, the investigation highlights the necessity of tailored regulations that encourage the use of alternative 

energy sources, environmentally friendly industrial processes, and AI-driven long-term viability systems. Policymakers can leverage 

these insights to foster sustainable innovation while reducing the environmental impact of population and industrial growth.  
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elevated energy consumption, the primary contributor to environmental damage [1], [2]. The USA is 

recognized as the leading source of global CO₂ emissions, which have significant implications on the overall 

Greenhouse Gases (GHGs) in the environment [3]. The United States is the second-highest contributor of 

CO₂ since it consumes 16% of the world’s energy while only making up 4.3% of the world’s population [4]. 

Moreover, there has been a visible shift towards green power, with a strong 13% worldwide capability rise in 

2022 [5]. The United States’ consumption of energy in 2023 produced 4.8 billion metric tons of carbon 

dioxide (GtCO₂), which is 2.7% lower than the previous year. There has been an almost 20% reduction of 

U.S. CO₂ emissions from energy use since 2005 [6]. The United States has grown rapidly in recent years 

because of major technological progress [7]. Major expenditures in science and innovation have facilitated the 

expansion of the US economy, illustrating the nation's commitment to leveraging technology for long-term 

growth. The United States is already dominating in many countries for technology improvements, especially 

in the rapidly growing field of AI that highlights the country’s interests in advanced technology [8]. The 

complex interaction of organizational, social, economic, and technical activity results in the destruction of the 

surroundings; thus, we posit that environmental shifts stem from multiple variables, including GDP growth, 

energy consumption, AI innovation, industrialization, and urbanization, among others in the USA. 

The United States' economic expansion intrinsically correlates with the increasing trend of CO2 emissions [9]. 

There exists a positive correlation between ecological degradation and the real output, which contributes to 

the rapid deterioration of the economy within the country. Considering the dominance of the USA as well as 

the dependence on fossil fuels by the USA in the international growth of GDP [10], it is shocking how the 

releases of carbon are still increasing [11]. Ecological gains of AI are more visible in honorific stages of its 

development, enhancing its ability to reduce EF and CO₂ outputs as well as facilitating shifts in energy [12]. 

The function of AI in saving the environment is diverse, involving the surveillance of natural systems, 

safeguarding species in danger, and managing natural assets [13]. AI can substantially aid in biodiversity 

conservation and the advancement of sustainable practices through novel tracking, security, and supervision 

technologies. However, fulfilling careful consideration of the legal, social, and technical aspects of AI 

development, with an emphasis on designing systems that are not only successful but also balanced and 

durable [14]. Moreover, the United States is prioritizing the proper advancement of AI technology to improve 

worldwide safety and wealth. It aims to solve pressing world problems such as the safety of food, ecological 

problems, and health dangers by partnering with foreign countries to create virtual communities, decrease 

risks, and ensure balanced artificial intelligence innovation [15].  

The energy requirements of numerous rising nations predominantly rely on nonrenewable power resources 

[16]. Fossil fuel-based energies are inexpensive yet destructive. In contrast, energy from green supplies is 

expensive yet resilient. An increase in fossil fuels for use and manufacturing operations would result in an 

increase in energy and CO₂ emissions [17]. In 2023, the total primary energy usage in the United States reached 

around 94 quadrillion Btu [18]. In 2022, CO2 emissions from fossil fuel burning, natural gas usage, and 

petroleum utilization increased by 8%, 5%, and 1%, respectively. However, CO2 emissions from burning coal 

dropped by 6% relative to 2021 [19]. While there is an increasing share of renewables in total energy 

consumption, the substantial increase in energy demand upon industrialization, urbanization, and 

globalization in the last few decades makes a just transition from non-renewable to renewable energy difficult 

[20]. The use of non-renewable sources of energy may require some forceful measures to ensure protection 

and conservation of fossil fuel reserves, which affect stability and geopolitical issues. However, regulation has 

the potential to stimulate the development of renewable energy infrastructure, but only if governments spend 

money on creating sustainable military facilities [21], [22]. Furthermore, swift industrialization significantly 

contributes to GHGs and can affect the dynamics of instability. The expansion of manufacturing can elevate 

fossil fuel use, thereby augmenting CO2 and other GHGs. In addition, industry leads to deforestation and 

urbanization. 

This work significantly enhances the existing experience base by tackling important deficiencies in previous 

studies on environmental sustainability. This study applies the Ecological Footprint (EF), which is a known 
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and wide measure of environmental condition, in contrast with previous studies that predominantly used CO₂ 

emissions as a proxy for ecological well-being. Therefore, this work quantifies EF, providing substantial and 

practical insights for fostering equal growth in the USA and worldwide. In addition, it examines the impacts 

of economic growth, AI innovation, and energy consumption on ecological quality in the USA, drawing from 

the recent statistics from 1990 to 2022. The present empirical study applies the novel Autoregressive 

Distributed Lag (ARDL) limits testing approach in the STIRPAT framework and confirms its results based 

on FMOLS, DOLS, and CCR. The results show that while AI innovation improves the quality of biodiversity, 

things like energy use, economic growth, industrialization, and urbanization have a destructive influence on 

the health of ecosystems in the USA. Therefore, with these contributions our work is to clarify the intricate 

link between the chosen factors and EF, hence directing future academic efforts towards greater knowledge 

and effective actions. 

We structure the remaining portion of this investigation in a specific sequence. Section 2 scrutinizes relevant 

literature, Section 3 describes methodology and data, Subsection 4 analyzes the expected outcomes and 

discussion, and the latter section concludes the examination with the policy implications.  

2|Literature Review 

At the outset, economies emphasized enhanced output as a foundation for societal improvement, establishing 

a robust connection between economic progress and ecological sustainability [23]. Researchers from all over 

the world have been looking at the correlation between GDP growth and environmental harm over the last 

few years, and their findings have been quite divergent [24]. For instance, Rahman et al. [25] study the causal 

effects of agriculture, GDP growth, and energy consumption on ecosystem damage in Bangladesh during 

1971-2022. They employ the DOLS estimation and discover that ecological harm increases with rising GDP. 

Ahmad et al. [26] conducted an ARDL regression to discover how advances in the economy and technology 

shape eco-damage in China. The DOLS shows that if the GDP increases by 1%, CO₂ emissions rise by 0.51%. 

Raihan et al. [27] investigate the intertwined relationship between economic growth, energy usage, and CO₂ 

emission in Bangladesh from 1974 to 2022. Using the technique of the ARDL limit test, they established that 

an increase in GDP by 1% would lead to a 0.13% increase in CO2 emissions. A similar conclusion was also 

recorded by Ahmed et al. [28] in China, and Saud et al. [29] in BRI countries. Conversely, Ridwan et al. [30] 

investigate the effect of urbanization, industrialization, and GDP in six South Asian countries from 1972 to 

2021. They applied DKSE methodology and concluded that GDP significantly decreases CO₂ emissions. 

Mehmood et al. [31] assessed the GDP stimulus of the G-7 areas' initiatives to reduce GHGs from 1990 to 

2020. This CS-ARDL model shows an inverse relationship between GDP and CO2 emissions. In addition, 

Raihan et al. [32]  investigate the effect of GDP on the environment of China from the year 1993 to 2022. 

The ARDL technique was used in the study, and hence increased economic growth can bring down emission 

levels in the future.  

Through the extent of AI use, it will be easier to ameliorate ecosystem damage, prioritize resources’ execution, 

and unveil new disclosures. Few researchers have sharpened their awareness of the aggressive progress of AI 

and focused the investigations on its macroeconomic implications [33]. According to Chen et al. [34] AI can 

reorganize industrial segments, increase speedy development of budding areas, increase efficiency in 

consumption of energy as well as change company structures and further develop integrity of ecological realm. 

Ridwan et al. [35] discuss the impact of AI technology on developing the environment in the United States 

between 1990 and 2019. Upon using the ARDL approach, they found that AI technology had a positive 

correlation with LCF in the short and long terms. Bala et al. [36] explore how AI innovation impacts 

environmental sustainability in the G-7 region between the years 2010 and 2022. This work uses Panel ARDL 

and Quantile Regression analysis methods and found a significant positive relation between AI innovation 

and ecological health. In the same way, Hossain et al. [37] look at the impact of AI innovation on the 

environment in the Nordic region, where they use data from 1990 to 2020. They utilized the ARDL paradigm 

and found that the AI innovation significantly and positively affects the level of improved ecological health 
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both in the short and long term. Moreover, several researchers also found same outcome such as Akther et 

al. [38] in USA, Atasoy et al. [39] in USA, and Dai [40] in Europe. 

Nathaniel et al. [41] analyze the effects of conservation measures on EF in the Next-11 nations from 1990 to 

2016. Their socioeconomic analysis shows that EF is amplified by rising energy consumption. Between 1990 

and 2020, Raihan et al. [42] studied the connections between Vietnam's the expansion of GDP, energy use, 

and the health of ecosystem. The DOLS method proves that energy consumption degrades ecological 

integrity. In their analysis of the EF in the UK from 1970 to 2015, Eweade et al. [43] consider the effects of 

energy consumption and globalization. The ARDL limit test indicates that energy use positively influences 

the EF. Also, from 1972 to 2021, Pattak et al. [44] use the STIRPAT paradigm to explain how nuclear, clean, 

and non-green energies affected the release of CO₂ in Italy. The results show that CO₂ emissions can grow 

by 1.505 % for every 1% increase in the use of fossil fuels over a long period of time. On the other hand, Sun 

et al.[45] look at how BRICS nations' energy consumption affects them. Using the quantile-on-quantile 

technique, they find that for most quantiles in South Africa, energy consumption has a detrimental impact on 

EF, whereas for most quantiles in China and India, it has a positive effect. Conversely, Rahman et al. [46] 

analyze the implication of industrialization and green power on the EF of the ten most populous countries 

from 1990 to 2020. It utilizes ARDL, PMG, and MMQR regression methods and demonstrates that renewable 

energy usage significantly negatively impacts the EF. The encouraging connection between energy 

consumption and EF were illustrated by Raihan et al. [47] in India, and Khan et al. [48] within India. 

According to Yang et al. [49], industrialization has increased the release of CO₂ and established a large 

environmental impact. Voumik and Ridwan [50] adopted the STIRPAT model to determine the implication 

of industrialization on the environment in Argentina from 1972 to 2021. The data demonstrate that INDUS 

adversely affects the ecology in Argentina over the long term. Aslam et al. [51] investigates the effect of 

INDUS on the EF of 11 East Asian and Pacific nations from 2000 to 2023. The FMOLS method and panel 

quantile regression indicated that industrialization amplifies the EF. Nevertheless, Munir and Ameer [52] used 

the non-linear ARDL method to show how INDUS caused ecological destruction in Pakistan between 1975 

and 2016. They observed that heightened INDUS exacerbates the loss of ecosystems, whereas diminished 

industrialization had no impact on the ecosystem. In contrast, Ridwan et al. [53] analyze the ecological 

consequences of financial growth and INDUS  in the United States from 1990 to 2022. The ARDL bounds 

test established an upward trend between industrialization and LCF. Yang and Usman [54] examined the 

effects of industrialization on EF from 1995 to 2018 across ten nations. The author employed the STIRPAT 

model and determined that INDUS increases the EF. Furthermore, Patel and Mehta [55] evaluated the 

disparate effects of INDUS on the environment in India employing the NARDL model. The research 

indicated that INDUS markedly decreases CO2 emissions in the long term. 

The impact of human population on the natural world can have positive and negative outcomes. Population 

growth has negative effects on the ecosystem since it causes energy consumption to increase [56]. By analyzing 

data from 50 large, complex economies between 1990 and 2018, Abbas et al. [57] determine the impact of 

several variables on EF. According to the results obtained using an expanded STIRPAT equation, the EF is 

negatively affected by the larger population. Using data from 1990–2017, Javeed et al. [58] analyze the EF in 

Asian countries by looking at the correlation between GDP growth, population increase, and renewable 

energy. The FM-OLS data shows that the EF increases by 0.03% for every 1% increase in population size. 

Raihan et al. [59] analyze the effects on China's environment of renewable energy, urbanization, and GDP. 

The study found that urbanization had a favorable and significant impact on CO2 emissions, using the ARDL 

technique. Xie et al. [60] found similar results for China's ecological situation, suggesting that the country's 

population explosion worsens the loss of biodiversity. Similar outcome was also observed by Ridwan et al. 

[61] across G-7 region, Raihan et al. [62] within USA, Raihan et al. [63] in G-7 region. Consequently, it is 

essential to implement green technologies in regions to establish sustainable cities and 

surroundings. However, using the ARDL bounds test method, Begum et al. [64] showed that there is no 

conclusive connection between the rate of growing population and environmental harm in Malaysia. 
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As far as we are aware, no individual has looked at the consequences of the United States' energy 

consumption, AI innovation, GDP growth, and EF all at once. Several investigations have been conducted 

by individuals in these domains, particularly utilizing CO2 emissions as a substitute for environmental health; 

nevertheless, there hasn't been a collective effort to unify data in these areas. Moreover, the significance of 

innovation in artificial intelligence and its consequences for the consumption of energy have not received 

adequate attention, particularly in the United States. From the USA viewpoint, these qualities make AI 

innovation a whole fresh subject for study. Furthermore, our research employs the ARDL, which facilitates 

the effective estimation of panel data models and thus augments methodological comprehension in the 

discipline. Consequently, this research intends to fill a knowledge vacuum and provide national and 

international governance structures concerning the preservation of the planet. 

3|Methodology 

To evaluate the connection between the selected factors and EF, the investigation used sophisticated 

econometric methodologies with the EF as the endogenous factor. Data on population, energy usage, and 

GDP were sourced from the World Development Indicators (2022), while reputable resources like our world 

in data offered details on breakthroughs in AI. All of the characteristics that were analyzed, together with 

their descriptions, avenues, and units of measure, are summarized in Table 1. 

Table 1. Variables description. 

 

 

 

 

 

 

 

 

The STIRPAT model is a traditional framework for identifying factors contributing to environmental damage 

[65]. We used IPAT framework [66] to examine the influence of relevant factors. Their main focus was on 

the three important factors that impact the environment. One problem with this approach is that it doesn't 

pay enough attention to the things that cause alterations that aren't proportionate or traditional [67]. 

Furthermore, the IPAT model lacks the capacity to assess the specific importance of influencing factors in 

relation to one another [68]. Hence, the modified STIRPAT model (Eq. (4)) has been used in numerous 

research studies to investigate the implications for the natural world [69], [70]. We can find the IPAT pattern 

in Eq. (1): 

Dietz and Rosa [71] devised the STIRPAT model, which uses stochastic effects through regression in 

assessing the ecological impacts of population, affluence, and technological advancement by reformulating 

the IPAT model. The new form of the model is the following:  

Here, P represents the population of the country; A signifies its wealth, and T indicates its technology at time 

t. In the STIRPAT model, the constant term is denoted as C, while the random error component is 

Variables Description Logarithmic Form Unit of Measurement Source 

EF EF LEF Gha per person GFN 

GDP Gross Domestic 
Product 

LGDP GDP per capita (current US$) WDI 

AI AI innovation LPAI Estimated investment in AI (US$) Our world in data 

ENU Energy use LENU Energy use (kg of oil equivalent per 
capita) 

WDI 

INDUS Industrialization LINDUS Industry value added (% of GDP) 
 

POP Population LPOP Population, total WDI 

I ≡ P. A. T. (1) 

Iit = CPit
φ1Ait

φ2 Tit
φ3εit (2) 
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represented by ε. Conversely, φ1 , φ2 and φ3 denote the coefficients of P, A, and T, respectively. We can 

articulate the model's logarithmic transformation as follows: 

In addition, using the necessary material that exists right now, we created an experimental variant of the 

conceptual structure in Eq. (4): 

In this context, EF represents the EF, AI signifies artificial intelligence innovation, ENU implies energy use, 

GDP stands for per capita gross domestic product, INDUS denotes industrialization, and POP reflects total 

population size. We use the natural logarithm in Eq. (5), which can be expressed in this manner: 

The parameters β0 symbolize the particular intercept terms and β1, β2 β3, β4,and β5 the exogenous factors' 

elasticities. The natural logarithmic modifications of EF, GDP, AI innovation, energy utilization, 

industrialization, and lnPOP, respectively, and the stochastic error term, denoted as εit. 

We utilized the ADF, the Phillips-Perron (PP), and the ADF-GLS method to establish whether the time series 

data series are stationary or not. Fuller [72] notes that the ADF process is better suited to more complicated 

procedures and are more durable than the Dickey-Fuller (DF) procedure. On the other hand, the PP test was 

used to find the lag part of a regression model while unit root tests were done on time series with 

autocorrelated and heteroscedastic non-systematic features [73]. In order to prepare statistics for the DF-GLS 

test, they are transformed using GLS regression. The test is divided into two parts. Before determining 

whether a unit root exists, the test de-trends (de-means) the data using the GLS technique [74]. 

This research utilized the ARDL bound test for cointegration. In contrast to other methods that necessitate 

bigger datasets for relevance, this one works irrespective of the regressor insertion order (I(1) or I(0)), and it's 

statistically more reliable to assess connection in situations with less information [75]. It also permits the 

parameters to possess distinct optimal delays, a feature not relevant to other methodologies. Lastly, the 

approach determines the long- and short-term interactions among components using a single reduced-form 

model [76]. After describing the advantages of the ARDL method, we use the bound test to check if the 

variables in this study are cointegrated. We set up the ARDL construction like Eq. (1): 

 

Eq. (6) constitutes the initial phase of the estimation procedure. Although ongoing associations with F-

statistics under the threshold are acceptable, Pesaran et al. [77] state that they are implausible when the F-

statistics are between the test values. Hence, we computed the Error Correction Model (ECM) to verify the 

existence of factor-level cointegration. The ARDL methodology uses the following ECM formulation: 

  

lnIit = C + φ1lnPit + φ2lnAit + φ3lnTit + εit   (3) 

EF = f(GDPit, AIit, ENUit, INDUSit, POPit). (4) 

lnEFit = β0 + β1lnGDPit + β2lnAIit + β3lnENUit + β4lnINDUSit + β5lnPOPit + εit (5) 

ΔLEFt = δ0 + δ1LEFt−1 + δ2LGDPt−1 + δ3LAIt−1 + δ4LENUt−1 + δ5LINDUSt−1 + δ6LPOPt−1

+ ∑ γ1

m

i=1

ΔLEFt−i + ∑ γ2

m

i=1

ΔLGDPt−i + ∑ γ3

𝑚

i=1

ΔLAIt−i + ∑ γ4

m

i=1

ΔLENUt−i

+ ∑ γ5

m

i=1

ΔLINDUSt−i + ∑ γ6

m

i=1

ΔLPOPt−i + εt  

(6) 
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We utilized the FMOLS, CCR and the DOLS test to evaluate the stability of the ARDL conclusions. Narayan 

and Narayan [78] assert that FMOLS is capable of addressing endogeneity, autoregression issues, and mistakes 

resulting from sample bias. To account for variations in the stochastic regression, the DOLS permits the error 

component to be included in the symmetric cointegration formulation. According to Fatima et al. [79], this 

method is useful for incorporating cointegrated architectures wherein elements are combined in different 

orders. A goal of the CCR modification is to eliminate the inevitable internality that arises from extended 

association [80]. It is analogous to FMOLS in numerous aspects, particularly in theory [81]. 

The Lagrange Multiplier (LM), Jarque-Bera, and Breusch-Pagan-Godfrey tests are vital for testing the 

assumption of the model and ensuring that the findings are credible when examining time series. In order to 

ensure that the residuals are normal, a Jarque-Bera test is a process that can help in this regard. By tracking 

serial correlation in residuals, the LM test ensures that errors are not made simultaneously, meaning that 

estimates would not be tilted and erroneous [82]. Additionally, we use the Breusch-Pagan-Godfrey test in 

confirming the heteroscedasticity, or non-constant variance, of the residuals.  

Table 1 presents the statistical results for various normality metrics, including mean, standard deviation, 

minimum, and maximum values, derived from a dataset covering the USA from 1996 to 2022. Every factor 

has 32 observations, indicating that all variables exhibit positive means, with LINDUS possessing the greatest 

mean and LENU the lowest. Furthermore, we attribute the smallest value to LINDUS and the maximum to 

LPOP. Furthermore, almost all measurements have low standard deviation, which means that the data points 

move about the mean rather than suddenly expanding across the area. 

Table 2. Summary statistics. 

 

 

 

 

 

 

Table 3 shows the results of the stationarity tests (ADF, DF-GLS, and P-P) both at the level (I(0)) and first 

difference (I(1)) for the components that have been log-transformed. With no exception whatsoever, the data 

points to a stable state at the I(0) level for both advancements in AI and population. There is a 5% level of 

significance for the LAI but a 1% level of significance for the LOP. Conversely, LEF, LGDP, LENU, as well 

as LINDUS exhibited non-stationarity at the level but attained stationarity following initial difference 

adjustment. In addition, at the 1% level of significance, all of these features stand out. We can proceed with 

our analysis in the subsequent part utilizing the ARDL strategy, considering the diversified sequence of 

insertion.  

 

 

 

ΔLEFt = δ0 + δ1LEFt−1 + δ2LGDPt−1 + δ3LAIt−1 + δ4LENUt−1 + δ5LINDUSt−1 + δ6LPOPt−1

+ ∑ γ1

m

i=1

ΔLEFt−i + ∑ γ2

m

i=1

ΔLGDPt−i + ∑ γ3

m

i=1

ΔLAIt−i + ∑ γ4

m

i=1

ΔLENUt−i

+ ∑ γ5

m

i=1

ΔLINDUSt−i + ∑ γ6

m

i=1

ΔLPOPt−i + ¥ECMt−1 + εt  

(7) 

Variable Obs Mean Std. Dev. Min Max 

T 32 2005.5 3.091 1990 2021 

LEF 32 4.8797 4.891 15.279 15.569 

LGDP 32 8.0987 2.576 10.081 11.159 

LAI 32 9.7865 1.82 6.321 9.724 

LENU 32 4.779 0.728 3.949 5.272 

LINDUS 32 10.625 2.133 2.268 2.871 

LPOP 32 6.7829 3.0871 19.335 19.621 
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Table 3. Results of unit root test. 

 

 

 

 

 

 

To find out if the factors chosen were co-integrated, the current study used an ARDL bounds assessment. 

The findings of the ARDL bound test indicate that there is co-integration, rejecting the null hypothesis at the 

1% significance threshold. According to Table 5, the F-test statistic reached the specified value with a value 

of 6.997. Therefore, it's reasonable to say that there are clear co-integrating interactions among the settings 

of the model. Such features make it easy for the simulation to quickly adjust to a common, unpredictable 

disruption. This leads us to the conclusion that changes in US sustainability are affected by variations in all 

factors mentioned.  

Table 4. Results of ARDL bound test. 

 

 

 

 

Table 5 displays the findings of the Panel ARDL framework, which show the complex patterns that affect the 

environmental impact of the USA region. When it comes to LGDP, the traditional scales of significance are 

maintained for the immediate coefficient (0.234) and the subsequent coefficient (-0.361). In this particular 

context, it appears that growth in the economy is the sole factor leading to ecological damage. This outcome 

is supported by Raihan et al. [83], Addai et al. [84], Sahoo and Sethi [85], and Syed et al. [86]. Conversely, 

Georgescu and Kinnunen [87] asserted that separating GDP expansion from EF enables economic 

development while concurrently diminishing adverse environmental effects. 

Conversely, the LAI coefficient and LEF are positively related, and this is indicated by a 1% level of 

significance (both instances have p-values lower than the typical standard). Statistics show that a 1% increase 

in LAI leads to a long-term decrease of 0.542% in LEF and an immediate reduction of 0.781%. With a long-

term significance level of 1% and a short-term significance level of 5%, the findings suggest that using 

advanced AI technology could improve the ecosystem in both time frames. Utilizing AI enables humanity to 

more effectively address global warming and attain ecological sustainability while leveraging natural resources 

[88]. Several researchers across different regions, including Rayhan [89], and Rahman et al. [90] corroborate 

the findings of our study. Conversely, the destructive relationship between LENU and LAEF over both short 

and long periods demonstrates the unfavorable link within electricity use and EF. A 1% rise to LENU will 

have a short-term impact of 0.146% on LEF and a long-term impact of 0.346%. This outcome is statistically 

significant in both instances at the 1% threshold. Similar findings were found by Asif et al. [91] in South Asia, 

Ali et al. [92] in China, and Deka et al. [93] in the EU-27 countries. Therefore, countries that use an excessive 

amount of contaminated energy will have a tremendous adverse effect on the ecosystem in the US compared 

to those who use a lot of green energy.  

Similarly, the LINDUS shows an unfavorable association with LEF, and the coefficient is significant at the 

1% level. In particular, industrialization is beneficial for the US ecosystem since a 1% rise in LINDUS 

generates a 0.450% increase in the long run and a 0.561% increase in the short run. However, Adejumo et 

Variables ADF P-P DF-GLS Decision 

I(0) I(1) I(0) I(1) I(0) I(1) 

LEF -0.768 -5.234*** -0.564 -5.087*** -0.679 -5.981*** I(1) 

LGDP -0.872 -4.214*** -0.871 -4.451*** -0.451 -3.245*** I(1) 

LAI -2.981** -6.241*** -2.871** -5.781*** -2.781** -6.781*** I(0) 

LENU -0.361 -6.231*** -0.562 -4.451*** -0.782 -5.873*** I(1) 

LINDUS -0.381 -4.501*** -0.231 -4.231*** -0.451 -4.778*** I(1) 

LPOP -4.561*** -5.781*** -4.990*** -6.071*** -4.981*** -5.081*** I(0) 

Test Statistic Value Signif. I(0) I(1) 

F-statistic 6.997 10% 2.08 3.01 

K=5  6% 2.39 3.38 

  2.50% 2.7 3.73 

  1% 3.06 4.15 
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al.[94] see industrialization as the primary catalyst for sustainable monetary expansion. Researchers such as 

Nasrollahi et al. [95] for the OECD and MENA region, and Li et al. [96] from China concur with our findings, 

concluding that industrialization exacerbates ecosystem damage. According to the data in the table, there is a 

positive correlation between LPOP and LEF over both the near and long term. The p-value is lower than the 

typical limit, indicating statistically significant consequences in both time periods' findings. In the long run, 

LEF will go up by 0.0761%, whereas for each 1% increment in LPOP, there will be a 0.731% decrease in the 

near term. Our results in various locations are consistent with the ones of Rahman [97] and Jie et al. [98]. On 

the flip side, industrial development might result from higher public transit and facility use rates in areas with 

greater populations which cause more pollutants [99-101].  

Table 5. Results of ARDL short-run and long-run. 

 

 

 

 

 

 

 

 

 

 

 

Table 6 shows that the ARDL results were shown to be reliable using three different estimating approaches: 

FMOLS, DOLS, and CCR. For each method, the expected LGDP coefficients are 0.354, 0.289, and 0.376. 

With the exception of FMOLS, that is significant at the 5% level, other estimators express significance at the 

1% level.  The conclusions are in line with the ARDL method's short- and long-term findings, indicating that 

growth in GDP has a negative impact on the US atmosphere. The LAI coefficient exhibits negative 

correlations with LEF in all calculations, demonstrating significance at the 1% level in each instance. 

Specifically, LEF diminishes by 0.321% in FMOLS, 0.276% in DOLS, and 0.326% in CCR for every percent 

increase in LAI. This result confirms what the ARDL simulation predicted and highlights how artificial 

intelligence breakthroughs have benefited the US environmental system.  

Table 6. Result of robustness check. 

 

 

 

 

 

 

 

Table 7 displays the results of the evaluation of diagnostics. The findings support the null hypothesis since no 

evaluation method was shown to be effective. A p-value of 0.1281 from the Jarque-Bera test indicates that 

the residuals follow a normal distribution. A p-value of 0.2041, as shown in the LM analysis, suggests that the 

Variables  LR SR 

LGDP 0.361***(0.1062) 
 

LAI -0.542***(0.3251) 
 

LENU 0.349***(0.3481) 
 

LINDUS 0.450***(0.3871) 
 

LPOP 0.761**(0.1087) 
 

D.LGDP 
 

0.234***(0.6717) 

D.LAI 
 

-0.781**(0.2541) 

D.LENU 
 

0.145***(0.1345) 

D.LINDUS 
 

0.561***(0.1467) 

D.LPOP 
 

0.731**(0.1562) 

ECT (Speed Adjustment) 
 

-0.551***(0.0182) 

Constant 
 

10.865***(15.1782) 

R-square 0.9821 

Variables FMOLS DOLS CCR 

LEF dependent 

LGDP 0.354***(0.2361) 0.289**(0.6719) 0.376***(0.3543) 

LAI -0.321***(0.6793) -0.276*(0.0453) -0.326**(0.1345) 

LENU 0.215***(0.2214) 0.164***(0.2654) 0.243***(0.3432) 

LINDUS 0.765**(0.2309) 0.327**(0.4301) 0.275**(0.2654) 

LPOP 0.652**(0.6345) 0.670***(0.2098) 0.446***(0.3411) 

C 10.723**(4.0437) 10.291**(4.0451) 10.652**(7.8929) 

R-squared 0.9801 0.9324 0.9591 
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residuals do not exhibit serial correlation. Moreover, no evidence of heteroscedasticity is present in the 

residuals, as confirmed by the Breusch-Pagan-Godfrey test (p = 0.2039).  

Table 7. The findings of diagnostic tests. 

 

 

 

 

In addition, we find intrinsic resilience in residuals throughout long and short time periods using the CUSUM 

and CUSUM-SQ measures. As seen in the following picture, the CUSUM-SQ plot constantly aligns with the 

critical line, indicating that the findings are inside the range that is required. It indicates that the requirements 

are well-defined and have sufficient consistency at the 5% level of significance.  

 

 

Fig. 1. CUSUM and CUSUMSQ test. 

 

4|Conclusion and Policy Implications 

The present research investigated the complicated interrelationships between economic growth, AI 

innovation, energy usage, industrialization, and population growth, and the resulting effects on the EF in the 

USA between 1996 and 2022. The investigation used sophisticated econometric approaches to examine the 

EF and identify the elements impacting the ecological health of the area of choice. To ensure that the inquiry 

was rigorous, different unit root tests, such as ADF, P-P, and DF-GLS, were employed to test for non-

stationarity of variables. This made it possible to assess short-term and long-term effects using the innovative 

ARDL methodology. The robustness tests using FMOLS, DOLS, and CCR validate the reasonability and 

reliability of the ARDL findings, therefore increasing the confidence in the results. Finally, three diagnostic 

tests were employed to test the concerns of heteroscedasticity and autocorrelation in the chosen dataset. The 

results of the ARDL study uncover several significant feedbacks, suggesting a positive association between 

environmental factors and GDP expansion, energy consumption, industrialization, and growing population 

both in the short and long term. The outcomes indicate that the economic operations, increased energy 

consumption, heightened industrialization, and population growth will result in more pollution due to the 

consumption of more fossil fuels and mineral assets. Nevertheless, we found a negative relationship between 

AI innovation and EF, suggesting that the use of modern AI technology could potentially increase the natural 

EF of the designated area. These links underscore the significance of developments in artificial intelligence, 

the adoption of sustainable energy, and eco-friendly manufacturing and production in enhancing ecological 

sustainability dynamics in the USA. As a result, authorities can develop special measures and regulations that 

will minimize ecological degradation and promote the progressive technical advancement, stable tendency of 

the population, and use of alternative sources of energy in the specified area.  
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In order to encourage ecological sustainability in the USA, policymakers are to focus on the implementation 

of advanced AI systems, renewable energy approaches, and sustainable industries. Considering that economic 

growth, energy consumption, industrialization, and expansion of the population are positively correlated with 

environmental deterioration, there is a necessity for strict regulations of environmentally friendly technologies 

and alternative sources of cleaner energy. To maximize effectiveness in production while decreasing energy 

consumption and garbage, lawmakers should offer financial incentives for the use of artificial intelligence. 

Additionally, to further lessen industrialization's toll on the natural world, it is essential to advocate for greener 

manufacturing practices, including switching to clean energy sources and getting enterprises to switch to more 

sustainable materials. Policies should also emphasize stabilizing population growth to reduce pressure on the 

environment in terms of exhaustion of natural resources and also a harmony between development and 

environmental conservation. By adopting these measures, the USA can advance both technological 

innovation and environmental sustainability, ensuring long-term ecological health. 
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